The numpy.quantile()
method computes the q-th quantile of the data along the specified axis.
Example
import numpy as np
# create an array
array1 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
# calculate the 0.25th, 0.50th and 0.75th quantile of the array
q25 = np.quantile(array1, 0.25)
q50 = np.quantile(array1, 0.50)
q75 = np.quantile(array1, 0.75)
print(q25, q50, q75)
# Output: 1.75 3.5 5.25
quantile() Syntax
The syntax of the numpy.quantile()
method is:
numpy.quantile(array, q, axis = None, out = None, overwrite_input = False, method = 'linear', keepdims = False, interpolation = None)
quantile() Arguments
The numpy.quantile()
method takes the following arguments:
array
- input array (can bearray_like
)q
- qth quantile to find (can bearray_like
offloat
)axis
(optional) - axis or axes along which the quantiles are computed (int
ortuple of int
)out
(optional) - output array in which to place the result (ndarray
)keepdims
(optional) - specifies whether to preserve the shape of the original array (bool
)override_input
(optional) -bool
value that determines if intermediate calculations can modify an arraymethod
(optional) - the interpolation method to useinterpolation
(optional) - the deprecated name for themethod
keyword argument
Notes: The default values of numpy.quantile()
have the following implications:
axis = None
- the quantile of the entire array is taken.- By default,
keepdims
andoverride_input
will beFalse
. - The interpolation method is
'linear'
. - If the input contains integers or floats smaller than
float64
, the output data type isfloat64
. Otherwise, the output data type is the same as that of the input.
quantile() Return Value
The numpy.quantile()
method returns the q-th quantile(s) of the input array along the specified axis.
Quantile
The quantile is a statistical measure that represents the value below which a specific percentage of data falls. It helps analyze the distribution of a dataset.
In NumPy, the quantile()
function computes the q-th quantile of data along the specified axis.
The q-th quantile represents the value below which q percent of the data falls. For example, the 0.50th quantile (also known as the median) divides the data into two equal halves.
Note: numpy.quantile()
and numpy.percentile()
do the same thing. If you want to specify q
from 0 to 100, use percentile()
and if you want to specify q
from 0.0 to 1.0, use quantile()
.
Example 1: Find the Quantile of an ndArray
import numpy as np
# create an array
array1 = np.array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
# find the 50th quantile of entire array
quantile1 = np.quantile(array1, q = 0.50)
# find the 50th quantile across axis 0
quantile2 = np.quantile(array1, q = 0.50, axis = 0)
# find the 50th quantile across axis 0 and 1
quantile3 = np.quantile(array1, q = 0.50, axis = (0, 1))
print('\n50th quantile of the entire array:', quantile1)
print('\n50th quantile across axis 0:\n', quantile2)
print('\n50th quantile across axis 0 and 1:', quantile3)
Output
50th quantile of the entire array: 3.5 50th quantile across axis 0: [[2. 3.] [4. 5.]] 50th quantile across axis 0 and 1: [3. 4.]
Example 2: Using Optional out Argument
The out
parameter allows us to specify an output array where the result will be stored.
import numpy as np
arr = np.array([[1, 2, 3],
[4, 5, 6]])
# create an output array
output = np.zeros(3)
# compute 25th quantile and store the result in the output array
np.quantile(arr, 0.25, out = output, axis = 0)
print('25th quantile:', output)
Output
25th quantile: [1.75 2.75 3.75]
Example 3: Using Optional keepdims Argument
If keepdims
is set to True
, the resultant array's dimensions are the same as the original array.
import numpy as np
arr = np.array([[1, 2, 3],
[4, 5, 6]])
# keepdims defaults to False
result1 = np.quantile(arr, 0.50 , axis = 0)
# pass keepdims as True
result2 = np.quantile(arr, 0.50, axis = 0, keepdims = True)
print('Dimensions in original array:', arr.ndim)
print('Without keepdims:', result1, 'with dimensions', result1.ndim)
print('With keepdims:', result2, 'with dimensions', result2.ndim)
Output
Dimensions in original array: 2 Without keepdims: [2.5 3.5 4.5] with dimensions 1 With keepdims: [[2.5 3.5 4.5]] with dimensions 2