The numpy.arctan()
method computes the arctangent (inverse tangent) of an array.
Example
import numpy as np
# create an array
array1 = np.array([0, 1, -1])
# calculates the element-wise arctangent (inverse tangent) of array1
result = np.arctan(array1)
print(result)
# Output: [ 0. 0.78539816 -0.78539816]
arctan() Syntax
The syntax of the numpy.arctan()
method is:
numpy.arctan(x, out = None, where = True, dtype = None)
arctan() Arguments
The numpy.arctan()
method takes the following arguments:
x
- an input arrayout
(optional) - the output array where the result will be storedwhere
(optional) - a boolean array or condition indicating where to compute the arctangentdtype
(optional) - data type of the output array
arctan() Return Value
The numpy.arctan()
method returns an array with the corresponding inverse tangent values.
Example 1: Use of out and where in arctan()
import numpy as np
array1 = np.array([0, -1, 1, 10, 100, -2])
# create an array of zeros with the same shape as array1
result = np.zeros_like(array1, dtype=float)
# compute inverse tangent of elements in array1
# only where the element is greater than or equal to 0
np.arctan(array1, out = result, where = (array1 >= 0))
print(result)
Output
[0. 0. 0.78539816 1.47112767 1.56079666 0. ]
Here,
out = result
specifies that the output of thenumpy.arctan()
method should be stored in the result array,where = (array1 >= 0)
specifies that the inverse tangent operation should only be applied to elements in array1 that are greater than or equal to 0.
Example 2: Use of dtype Argument in arctan()
import numpy as np
# create an array
values = np.array([0, 1, -1])
# calculate the inverse tangent of
# each value with float data type
arctans_float = np.arctan(values, dtype = float)
print("Inverse Tangent with 'float' dtype:")
print(arctans_float)
# calculate the inverse tangent of
# each value with complex data type
arctans_complex = np.arctan(values, dtype = complex)
print("\nInverse Tangent with 'complex' dtype:")
print(arctans_complex)
Output
Inverse Tangent with 'float' dtype: [ 0. 0.78539816 -0.78539816] Inverse Tangent with 'complex' dtype: [ 0. +0.j 0.78539816+0.j -0.78539816+0.j]
Here, by specifying the desired dtype
, we can control the data type of the output array according to our specific requirements.
Note: To learn more about the dtype
argument, please visit NumPy Data Types.